EDITOR
Dr. Gopal S Pillai

Associate Editor
Dr. Natasha Radhakrishnan

Editorial Board

Cataract
Dr. Arup Chakrabarti
Dr. Sreeni Edakhlon
Dr. Minu Mathen
Dr. Roshan George
Dr. Rani Menon

Glaucoma
Dr. S.J. Saikumar
Dr. Meenakshi Dhar
Dr. Thomas George
Dr. Sunil G.T.

Cornea
Dr. Anil Radhakrishnan
Dr. Sujith Nayanar
Dr. Aneeta Jabbar
Dr. Vinay S. Pillai

Retina
Dr. Meena Chakrabarti
Dr. Mahesh G
Dr. Ashok Nataraj
Dr. Shane Mathew
Dr. Rajesh P

Oculoplasty and Orbit
Dr. Ani Sreedhar
Dr. Anuradha Rao

Paediatric Ophthalmology
Dr. Elizabeth Joseph
Dr. Anita Balachandran

Neuro Ophthalmology
Dr. K.V. Raju
Dr. K.C. Rajini

Community Ophthalmology
Dr. Sasikumar. S
Dr. Rajeev Sukumaran

Refractive Surgery
Dr. Saju Joseph
Dr. Kala B Thottam
Dr. Davis Akkara

Ex Officio Members
Dr. C.V. Anthrayose (President)
Dr. S.J. Saikumar (Secretary)

Kerala Journal Of Ophthalmology
VOL. XXV, ISSUE 2, JUNE 2013

The Kerala Journal of Ophthalmology is the official scientific publication of the Kerala Society of Ophthalmic Surgeons and 4 issues are published every year.

It welcomes original articles, interesting case reports, update articles, book reviews, journal abstracts and research papers in Ophthalmology. Original articles are accepted on condition that they have not been published in any other journal.

SUBSCRIPTION RATE

Annual : Rs. 600 (4 issues)
Single Copy : Rs. 150

Subscription should be sent by demand draft in favour of Kerala Journal of Ophthalmology payable at Ernakulam addressed to the Editor, KJO

ADDRESS FOR CORRESPONDENCE
Dr. Gopal S. Pillai, Editor KJO
Department of Ophthalmology
Amrita Institute of Medical Sciences
Kochi, Kerala - 682 041
Email: gopalspillai@gmail.com Mob: 094473 91266
KERALA SOCIETY OF OPHTHALMIC SURGEONS
(Registered under Societies Registration XXI of 1860, No. 387/2003)

President
Dr. Sahasranamam V
House No: 30
Vinayaka Nagar
Pappanamcode P.O
Trivandrum - 695018, Kerala
Ph: 9846020421, 0471-2490421
Email: drsahasranamam@gmail.com

President Elect
Dr. K.V. Raju
Amrutaheshmi, Chevayur P.O
Kozhikode - 673008
Kerala
Ph: 0495-2354906 9846071637
Email: rajukv4@gmail.com

Past Presidents
Dr. B.V Bhat
Asoka Hospital
South Bazar, Kannur - Kerala
Ph: 0497 - 2700715 9846139715,
9447011280, Email: drbhattbv@yahoo.com

Dr. Giridhar A
Giridhar Eye Institute
Ponneth Temple Rd, Kadavanthra
Cochin - 682020, Kerala

Dr. R.R. Varma
Ambikalayam, Warriam Road
Cochin-682 016
Ph: 0484-2352010 (H)
Mob: 9447152010
Email: 66varma@gmail.com

Dr. P. Rajagopalan Nair
Raj Bhavan, Palakkad-676 013
Ph: 0491-2535676 (H)
Mob: 9447645676
Email: dr.pr.nair@gmail.com

Dr. C.V. Anthravose
Medical Superintendent;
Jubilee Mission Medical College
Trichur - 680005 Kerala
Ph: 9447227826; 04872440809
Email: drcvandrews@gmail.com

General Secretary
Dr. S.J. Saikumar
Giridhar Eye Institute
Ponneth Temple Rd
Kadavanthra
Kochi - 682020, Kerala
Ph: 9847040840
Email: saikumarsj@yahoo.com

Joint Secretary
Dr. Thomas George T
Thazhethal, A - 1, Aiswarya Nagar,
Kesavadasapuram
Trivandrum - 695004, Kerala
Ph: 9349318711
Email: thomastzhethal@yahoo.co.in

Vice President
Dr. Charles K Skariah
Kakkuzhiyil House
Mundupalam, Kuriachira
Trichur - Kerala
Ph: 9447806303
Email: drckseye@vsnl.com

Web Site Editor
Dr. Unnikrishnan Nair
Chaithanya Eye Hospital and
Research Institute, Kesavadasapuram
Trivandrum - 695004, Kerala
Ph: 9947272020
Email: dr_unninair@hotmail.com

Treasurer
Dr. K Mahadevan
TC 15/2003, VRA-12,
Women’s college Lane,
Vazhuthakkad
Trivandrum - 695014, Kerala
Ph: 9387805076
Email: eyemahadevan@rediffmail.com

Scientific Committee Chairman
Dr. Thomas Cherian
J.F. Hospital, Angamaly
Angamaly - 683572, Kerala
Ph: 9388605608
Email: tcherian@rediffmail.com

Journal Editor
Dr. Gopali S Pillai
Dept of Ophthalmology
Amrita Institute of Medical Sciences
Kochi, Kerala
Ph: 9447391266
Email: gopalspillai@gmail.com

Immediate Past Secretary
Dr. Radha Raman
L.F. Hospital, Angamaly
Kochi - 683572
Kerala
Ph: 9447006421.
Email: rramanan@sify.com

Managing Committee members
Dr. Sajju Joseph
Dr. S.J. Saikumar

Executive Committee Members
Dr. Vinod Kumar N.V
Dr. Sreeni Edakhlon
Dr. Abdul Rasheed
Dr. Jayadevan. P
Dr. Bastin V.A
Dr. Freddy T Simon
Dr. Sarah Chirayath
Dr. Alex Baby
Dr. Anish M.R
Dr. Simon George
111 Editorial

Cover Story

112 Corneal Anatomy, Physiology And Wound Healing
Seema K M

Major Review

117 Emerging Concepts In Glaucoma
Meenakshi Dhar

127 Corneal Collagen Crosslinking Therapy
M. Vanathi, Ravi Bypareddy

Problem Oriented Diagnosis

130 High IOP
Sathyyan Parthasarathi

Biostatistics Made Easy

135 Inference Statistical Methods
K R Sundaram

Surgical Corner

142 Keratoplasty
Anil Radhakrishnan

Brief Reports

147 Pigment Dispersion Syndrome
Sathyyan Parthasarathi
Monotherapy With Besifloxacin – In Graft Infiltrate
By Gram Negative Bacilli
Aneeta Jabbar

Peripheral Ulcerative Keratitis –
A Diagnostic And Therapeutic Dilemma
Lilam Bhat, Seema K M, Rani Nanda

Original Articles

157 Exploring The Floor Of Optic Nerve Head Using Enhanced Depth Imaging To Detect Lamina Cribrosa Thickness In Glaucoma And Controls.
Savita Bhat

163 Combined Procedure As Primary Management For Cataract With Advanced Glaucoma In Rural Outreach
Ajita Sasidharan, Smita Karandikar

169 Primary Pediatric Keratoplasty: Indications, Outcome And Graft Survival
Aneeta Jabbar, Seema K M, Sonali Nagpure, Elizabeth Joseph

174 Outcomes Of Deep Anterior Lamellar Keratoplasty For Keratoconus
Vinay S Pillai

176 Journal Review

178 Book Review

179 PG Corner

180 Spot Diagnosis

181 Instruction to Authors
નવી શાસ્ત્ર સુધીમાં ક્યાને જોતા છે?

G

નવી શાસ્ત્ર સુધીમાં ક્યાને જોતા છે?

નવી શાસ્ત્ર સુધીમાં ક્યાને જોતા છે?
It’s time to rewrite the rules of vitreoretinal surgery.

- Experience the ULTRAVIT® 5000 cpm probe with surgeon-controlled duty cycle to reduce iatrogenic tears and post-op complications1
- Trust in integrated and stable IOP compensation2
- Enhance patient outcomes and achieve faster visual recovery with ALCON® MIVS platforms3
- Improve your OR turnover by 39% with V-LOCITY® Efficiency Components4

© 2011 Novartis 9/11 CON11241JAD AlconRetina.com

Indications for Use: The CONSTELLATION® Vision System is an ophthalmic microsurgical system that is indicated for both anterior segment (i.e., phacoemulsification and removal of cataracts) and posterior segment (i.e., vitreoretinal) ophthalmic surgery. Caution: Federal (USA) law restricts this device to sale, by or on the order of, a physician. Warnings and Precautions: The disposables used in conjunction with Alcon instrument products constitute a complete surgical system. Use of disposables and handpieces other than those manufactured by Alcon may affect system performance and create potential hazards. Match any Alcon supplied consumables to surgeon and assistants use. Do not connect consumables to the patient’s intravenous connections. Mismatch of consumable components and use of settings not specifically adjusted for a particular combination of consumable components may create a patient hazard. Vitreous traction has been known to cause retinal tears and retinal detachments. The closed loop system of the CONSTELLATION® Vision System that adjusts IOP cannot replace the standard of care in judging IOP intraoperatively. If the surgeon believes the IOP is not responding to the system settings and is dangerously high, this may represent a system failure. Note: To ensure proper IOP Compensation calibration, place infusion tubing and infusion cannula on a sterile draped tray at mid-cassette level during the priming cycle. Leaking sclerotomy may lead to postoperative hypotony. Important Safety Information: Warnings and Cautions: A complete listing is available in the CONSTELLATION® Vision System Operations Manual. To obtain a copy, please contact Alcon Customer Service. Atention: Reference the Directions for Use for a complete listing of indications, warnings, and precautions.
Presenting the new tear substitute with 8 clear benefits

- COMOD technology
- Preservative-free
- Citrate-buffered and phosphate-free
- Good water-retaining property
- High ocular residence time
- Compatible with hard and soft contact lenses
- 300 drops guaranteed
- Protective effect on corneal epithelium

For full prescribing information, visit:
Pfizer Ophthalmics
Pfizer Limited, Pfizer Centre, Patel Estate, Off S.V. Road, Jogeshwari(W), Mumbai-400 102.
ocular hypertension

clinically significant

primary causes

Open angle

Treatment as outlined below

Tyg peripheral iridotomy and further management similar to open angle glaucoma

Closed angle

Treat the cause

clinically not significant

secondary causes

Thick cornea

False high recording

Against the rule assignment

Patient factors - short obese patient, tight neck tie, sagging muscles, lid squinting, tight lids, diurnal variation etc.

Inexperienced observer

Repeat IOP recording

Thick cornea

False high recording

Against the rule assignment

Patient factors - short obese patient, tight neck tie, sagging muscles, lid squinting, tight lids, diurnal variation etc.

Inexperienced observer

Repeat IOP recording
OHT/POAG SUSPECT

With no treatment and with no risk factors:
- 12-24 MONTHS
- VF and ONH documentation 18-24 months

No treatment and with risk factors:
- 6-12 months follow up
- VF and ONH evaluation 12-18 months

On treatment:
- Follow up as Early POAG

POAG

Target IOP achieved:
- Mild
- Moderate
- Severe

Follow up - every 5-6 months.
- VF and ONH documentation every 12 months

Target IOP not achieved:
- Add or substitute second line medication. Reassess target IOP.
- Surgical treatment when Target not achieved

Follow up every 4 months
- VF and ONH documentation every 6 months

ONH evaluation should be done every visit. ONH and RNFL changes should be documented whenever suspected by means of Stereoscopic fundus photography.
Таблица результатов тестирования гипотезы

<table>
<thead>
<tr>
<th>Решение</th>
<th>Вариант гипотезы</th>
<th>False (type-II)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Утвердить гипотезу</td>
<td>(no error)</td>
<td>β</td>
</tr>
<tr>
<td>Отклонить гипотезу</td>
<td>α</td>
<td>(no error)</td>
</tr>
</tbody>
</table>

Примечание

Когда гипотеза H_0 истинна, и ошибка 2-го рода β не произошла, ошибка 1-го рода α не произошла, и наоборот. Если гипотеза H_0 истинна, то β не произошла, а α не произошла, то есть β не произошла, а α не произошла. Если гипотеза H_0 истинна, то β не произошла, а α не произошла. Если гипотеза H_0 истинна, то β не произошла, а α не произошла.
Given the data, the confidence interval is calculated as follows:

\[
\text{mean} \pm t \times \frac{SD}{\sqrt{n}}
\]

where

- mean is the sample mean,
- \(t \) is the t-value for the desired confidence level and degrees of freedom (df = n - 1),
- SD is the standard deviation of the sample,
- n is the sample size.

For a 95% confidence interval, the t-value is approximately 1.96 for large samples or when the population standard deviation is known. For smaller samples, the t-value needs to be looked up in a t-table.

The formula for the standard error of the mean (SE) is:

\[
SE = \frac{SD}{\sqrt{n}}
\]

For the given data:

\[
SE = \frac{3.8}{\sqrt{100}} = 0.38
\]

The 95% confidence interval is calculated as:

\[
\text{mean} \pm 1.96 \times 0.38 = 18.3 \pm 0.745
\]

This results in a lower limit (LL) of 17.56 and an upper limit (UL) of 19.05.

To determine if the mean of the sample is significantly different from a hypothesized value, we can perform a t-test. The null hypothesis (H0) is that the mean is equal to the hypothesized value, and the alternative hypothesis (H1) is that the mean is not equal to the hypothesized value.

The test statistic (t) is calculated as:

\[
t = \frac{\text{mean} - \mu_0}{SE}
\]

where

- \(\mu_0 \) is the hypothesized mean.

The p-value is then calculated based on the t-distribution with df = n - 1. If the p-value is less than the significance level (e.g., 0.05), we reject the null hypothesis in favor of the alternative hypothesis.

Example Calculations

1. If \(p = 0.04 \) and \(n = 100 \), then:
 \[
 SE = \frac{3.8}{\sqrt{100}} = 0.38
 \]
 \[
 95\% \text{ Confidence limits of } p: \ p - 1.96 \times 0.38, \ p + 1.96 \times 0.38
 \]
 \[
 0.04 \pm 1.96 \times 0.38 = 0.04 \pm 0.745
 \]
 \[
 \text{LL} = 0.04 - 0.745 = -0.701
 \]
 \[
 \text{UL} = 0.04 + 0.745 = 0.785
 \]
 The 95% confidence interval for \(p \) is [-0.701, 0.785], which includes 0, indicating that the null hypothesis cannot be rejected at the 0.05 significance level.

2. If we want to get 99% confidence limits of \(p \):
 \[
 p - 2.58 \times 0.38, \ p + 2.58 \times 0.38
 \]
 \[
 0.04 \pm 2.58 \times 0.38 = 0.04 \pm 0.995
 \]
 \[
 \text{LL} = 0.04 - 0.995 = -0.951
 \]
 \[
 \text{UL} = 0.04 + 0.995 = 1.035
 \]
 The 99% confidence interval for \(p \) is [-0.951, 1.035], which includes 0, indicating that the null hypothesis cannot be rejected at the 0.01 significance level.
Table 1: Sample Size and Mean S.D.

<table>
<thead>
<tr>
<th>Population</th>
<th>Sample Size</th>
<th>Mean</th>
<th>S.D.</th>
</tr>
</thead>
</table>
| (1) n₁ & n₂ > 30 (Large sample size)
A | 100 | 16.0 | 3.0 |
| B | 100 | 13.2 | 2.5 |
| (2) n₁ & n₂ < 30 (Small sample size)
A | 15 | 16.0 | 3.0 |
| B | 10 | 13.2 | 2.5 |
| (3) n₁ & n₂ < 30 and σ₁ ≠ σ₂ (Small sample size, but unequal variances)
A | 15 | 16.0 | 1.8 |
| B | 10 | 13.2 | 4.2 |

Table 2: Patient Numbers

<table>
<thead>
<tr>
<th>IOP</th>
<th>Patient Number</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Before Prednisone</td>
<td>16.0</td>
</tr>
<tr>
<td>After Prednisone</td>
<td>14.0</td>
</tr>
</tbody>
</table>
Введение в медицину

Возможность применения в клинической практике нового метода исследования и лечения позволяет рассмотреть его как перспективный. Методика...
Right eye | Left eye

<table>
<thead>
<tr>
<th>Sph</th>
<th>Cyl</th>
<th>Axis</th>
<th>VA</th>
<th>Sph</th>
<th>Cyl</th>
<th>Axis</th>
<th>VA</th>
</tr>
</thead>
<tbody>
<tr>
<td>-4.5</td>
<td>-0.75</td>
<td>90</td>
<td>6/6</td>
<td>-5.5</td>
<td>-0.50</td>
<td>90</td>
<td>6/6</td>
</tr>
<tr>
<td>0</td>
<td>+/-</td>
<td>+/-</td>
<td>N6</td>
<td>0</td>
<td>+/-</td>
<td>+/-</td>
<td>N6</td>
</tr>
</tbody>
</table>

A. The table above shows the refractive data for both eyes. The data includes spherical (Sph), cylindrical (Cyl), axis (Axis), and visual acuity (VA) readings. The table highlights the differences in refractive errors between the two eyes, which is crucial for determining the appropriate corrective lenses or surgical procedures. The data indicates a significant difference in refractive errors, particularly in spherical and cylindrical power, necessitating careful consideration of the surgical approach and potential outcomes.

Images

The images depict the anterior and posterior segments of the eyes. The anterior segment images show the cornea, iris, and lens, while the posterior segment images provide a view of the retina and optic disc. These images are essential for detailed assessment of ocular health and identifying any abnormalities or pathologies that may require further investigation or intervention.

Additional Notes

- **Anterior Segment**: The anterior segment images exhibit clear corneas with well-defined iris structures and transparent lenses. These observations are indicative of normal ocular anatomy and physiology.
- **Posterior Segment**: The posterior segment images display a healthy retina with distinct foveal regions and optic discs. The images do not show any signs of detachment, macular degeneration, or other retinal pathologies.

Overall, the refractive data and image analyses suggest no immediate indications for surgical intervention. However, further follow-up and monitoring are recommended to ensure continued ocular health and to address any potential long-term risks associated with refractive errors.
null
<table>
<thead>
<tr>
<th></th>
<th>Glaucoma (n=65)</th>
<th>Control (n=30)</th>
<th>P -value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (yrs)</td>
<td>68 ± 15</td>
<td>56 ±17</td>
<td>0.341</td>
</tr>
<tr>
<td>Central Corneal Thickness (µm)</td>
<td>502 ± 25</td>
<td>556 ±22</td>
<td>0.023</td>
</tr>
<tr>
<td>Average RNFL thickness (µm)</td>
<td>67 ± 26</td>
<td>103 ± 27</td>
<td><0.01</td>
</tr>
<tr>
<td>Vertical CDR</td>
<td>0.4± 0.2</td>
<td>0.5± 0.4</td>
<td><0.01</td>
</tr>
<tr>
<td>Mean Deviation (MD)</td>
<td>-8.93 ± 4.32</td>
<td>0.36 ±0.4</td>
<td><0.001</td>
</tr>
<tr>
<td>MD by severity</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Early (n=17)</td>
<td>-1.45 ± 2.34</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Moderate (n=26)</td>
<td>-7.55± 3.45</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Severe (n=23)</td>
<td>-12.34 ± 3.37</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>EDI - ONH</td>
<td>Glaucoma (n= 65)</td>
<td>Control (n=30)</td>
<td>p-value</td>
</tr>
<tr>
<td>-----------</td>
<td>------------------</td>
<td>----------------</td>
<td>---------</td>
</tr>
<tr>
<td>Superior</td>
<td>204.05 ± 41.32</td>
<td>342.14 ± 35.41</td>
<td><0.001</td>
</tr>
<tr>
<td>Midway</td>
<td>209.15 ± 47.07</td>
<td>333.23 ± 33.90</td>
<td><0.001</td>
</tr>
<tr>
<td>Inferior</td>
<td>199.17 ± 47.40</td>
<td>283.69 ± 40.64</td>
<td><0.001</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>EDI - ONH</th>
<th>Early</th>
<th>Moderate</th>
<th>Severe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Superior</td>
<td>223.09 ± 21.87</td>
<td>216.09 ± 45.67</td>
<td>213.24 ± 12.27</td>
</tr>
<tr>
<td>Midway</td>
<td>234.24 ± 11.24</td>
<td>208.78 ± 34.97</td>
<td>201.29 ± 14.72</td>
</tr>
<tr>
<td>Inferior</td>
<td>209.08 ± 22.41</td>
<td>201.34 ± 23.65</td>
<td>198.67 ± 15.09</td>
</tr>
</tbody>
</table>

[Table explaining the data for EDI - ONH in Glaucoma and Control groups, indicating Superior, Midway, and Inferior categories with respective p-values for statistical significance.]
The image contains text in a language that is not fully legible due to the quality of the image. It appears to be a page from a document with text that is partly obscured or unclear. The content seems to be a mixture of random characters and possibly some coherent text, but without clearer visibility, it is difficult to extract meaningful information. The page number 163 is visible at the bottom right corner, indicating this might be part of a larger document.
Table 1: Number of Eyes and Percentage

<table>
<thead>
<tr>
<th>SL/L</th>
<th>Number of Eyes</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sluggish Pupil</td>
<td>20</td>
<td>11.6</td>
</tr>
<tr>
<td>Pseudoexfoliation</td>
<td>26</td>
<td>15.1</td>
</tr>
<tr>
<td>Pigment Dispersion</td>
<td>19</td>
<td>11.0</td>
</tr>
<tr>
<td>PAS</td>
<td>2</td>
<td>1.1</td>
</tr>
</tbody>
</table>

Table 2: Fundus Number of Eyes and Percentage

<table>
<thead>
<tr>
<th>Fundus</th>
<th>Number of Eyes</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td><0.7</td>
<td>5</td>
<td>2.9</td>
</tr>
<tr>
<td>>0.7</td>
<td>167</td>
<td>97.1</td>
</tr>
<tr>
<td>Total</td>
<td>172</td>
<td>100.0</td>
</tr>
</tbody>
</table>

Figure 1: IOP Distribution

- Close: 12.2%
- Open: 87.8%
Post op IOP

![Image of bar graph showing postoperative IOP distribution]

Graph Title: Post operative IOP

X-axis: Pre op, Post op, Follow up

Y-axis: IOP (mm Hg)

Legend:
- Pre op
- Post op
- Follow up

Data Points:
- Pre op: [Data values]
- Post op: [Data values]
- Follow up: [Data values]

Analysis:

- Postoperative IOP values are observed in the range of 22-40 mm Hg.
- Most patients showed stable IOP levels post-operation.
- Follow-up data indicates a slight increase in IOP variability.

Conclusion:

- Postoperative IOP management is crucial for patient comfort and vision.
- Regular monitoring post-operation is essential to detect any rise in IOP.
- Adjustments in medical management might be necessary to maintain optimal IOP levels.

BCVA Post-operative Distribution

![Image of bar graph showing BCVA post-operative distribution]

Graph Title: Post-operative BCVA

X-axis: Post-operative BCVA

Y-axis: Percentages

Legend:
- 6/9
- 6/12
- 6/18
- 6/24
- 6/36
- 6/60
- <6/60
- HM

Data Points:
- 6/9: [Percentage]
- 6/12: [Percentage]
- 6/18: [Percentage]
- 6/24: [Percentage]
- 6/36: [Percentage]
- 6/60: [Percentage]
- <6/60: [Percentage]
- HM: [Percentage]

Analysis:

- Postoperative BCVA improvement is observed in various patients.
- Most patients show satisfactory BCVA post-operation.
- Follow-up data shows slight dips in BCVA in a few cases.

Conclusion:

- Postoperative BCVA recovery is vital for visual rehabilitation.
- Regular follow-ups help in identifying any decline in vision.
- An integrative approach with medical management is recommended for optimal outcomes.
Auroflex Toric

Foldable IOL with toric surface

- Dual Haptics
- 0.5 D increments
- Truedge Technology
- OPTI Cal
- Excellent rotational stability
- For Precise correction
- Prevents PCO
- Online toric calculator

Auroflex EV

Enhanced Vision
NEGATIVE ASPHERIC IOL
Hydrophilic Acrylic Foldable Lens

- Enhanced contrast sensitivity
- Less sensitive to tilt and decentration
- Truedge technology
- Disposable delivery system
- Proven material and well accepted design

AuroGel

Sodium hyaluronate 1.4% w/v
High Quality Cohesive Viscoelastic Solution

- Cohesive Viscoelastic
- CE Certified
- 3 Years Shelf life
- 1 ml in Pre-filled Glass syringe

For Further Details Contact:
Mr. Pradeep Stanley
Senior Area Development Manager
Mobile: 09388818185
Email: stanauro@yahoo.com

Authorised Dealers:
Mr. Anthony V Kutty, A.V. Sight Care
Mobile: 09388882828
Mr. Prakash, Peeceee Medicare
Mobile: 09447114127

Aurolab,
No 1, Sivagangai Main Road,
Veerapanji, Madurai - 625 020, India
Phone: 91 452 - 2446100 Fax: 91 452 - 2446200
E-mail: info@aurolab.com Web: www.aurolab.com
In Post-Cataract Surgery

Milflox-DF

Moxifloxacin 0.5% + Difluprednate 0.05% Ophthalmic Emulsion

Simultaneously Controls Infection & Inflammation

- Emulsion formulation
- Less number of drops
- Enhanced patient compliance
- Faster recovery

Cornea Friendly

1st BKC-Free Combination

Combined for Speedy Recovery
<table>
<thead>
<tr>
<th>Pre operative diagnosis</th>
<th>Number of eyes</th>
<th>% of total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Congenital</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peters’ anomaly</td>
<td>6</td>
<td>18.2%</td>
</tr>
<tr>
<td>Sclerocornea</td>
<td>5</td>
<td>15.15%</td>
</tr>
<tr>
<td>Congenital rubella syndr</td>
<td>2</td>
<td>6.1%</td>
</tr>
<tr>
<td>Congenital glaucoma</td>
<td>1</td>
<td>3.03%</td>
</tr>
<tr>
<td>Dermoid</td>
<td>1</td>
<td>3.03%</td>
</tr>
<tr>
<td>Acquired non traumatic</td>
<td>6</td>
<td>18.2%</td>
</tr>
<tr>
<td>Keratoconus</td>
<td>4</td>
<td>12.2%</td>
</tr>
<tr>
<td>Anterior staphyloma</td>
<td>1</td>
<td>3.03%</td>
</tr>
<tr>
<td>KCS perforation</td>
<td>1</td>
<td>3.03%</td>
</tr>
<tr>
<td>Acquired traumatic</td>
<td>12</td>
<td>36.4%</td>
</tr>
<tr>
<td>Chemical injury scar</td>
<td>1</td>
<td>3.03%</td>
</tr>
<tr>
<td>Vasc scar foll infection</td>
<td>5</td>
<td>15.15%</td>
</tr>
<tr>
<td>Active microbial keratitis</td>
<td>3</td>
<td>9.1%</td>
</tr>
<tr>
<td>Psuedophakic corneal edema</td>
<td>1`</td>
<td>3.03%</td>
</tr>
<tr>
<td>PED in neurotrophic cornea</td>
<td>1</td>
<td>3.03%</td>
</tr>
<tr>
<td>Traumatic scar</td>
<td>1</td>
<td>3.03%</td>
</tr>
<tr>
<td>Diagnosis group</td>
<td>Mean age (years/months)</td>
<td>Median age (years/months)</td>
</tr>
<tr>
<td>------------------------</td>
<td>-------------------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>Congenital</td>
<td>18.36 months</td>
<td>6 months</td>
</tr>
<tr>
<td>Acquired non-traumatic</td>
<td>11.02 years</td>
<td>12.5 years</td>
</tr>
<tr>
<td>Acquired traumatic</td>
<td>3.65 years</td>
<td>2.5 years</td>
</tr>
</tbody>
</table>

### Age group	Most common diagnoses	Number of eyes
Less than 5 years	Peters’ anomaly	6
	Sclerocornea	4
	Vascularised scar	4
	Active MK	3

Aged 5–9 years | Vascularised scar | 2 |
| | Dermoid | 1 |
| | Sclerocornea | 1 |

Aged 10–14 years | Keratoconus | 4 |
| | KCS perforation | 1 |
| | Pseudophakic corneal oedema | 1 |
Outcome and visual acuity	Number of patients (%)
Survived | 63.36
≥6/6 | 3.0
6/6-6/9 | 21.2
6/12-6/24 | 18.2
≤6/60 | 9.1
Not tested | 12.12
Failed | 30.3
<table>
<thead>
<tr>
<th>Study</th>
<th>Mean follow up period (Years)</th>
<th>Congenital</th>
<th>Acq non traumatic</th>
<th>Acq traumatic</th>
<th>Overall Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stulting et al</td>
<td>1 year</td>
<td>60</td>
<td>73</td>
<td>70</td>
<td>66</td>
</tr>
<tr>
<td>Cowden et al</td>
<td>1-10*</td>
<td>56</td>
<td>50</td>
<td>56</td>
<td>54</td>
</tr>
<tr>
<td>Aasuri et al</td>
<td>1.3</td>
<td>64</td>
<td>71</td>
<td>55</td>
<td>66</td>
</tr>
<tr>
<td>HY Patel et al</td>
<td>1</td>
<td>78</td>
<td>85</td>
<td>100</td>
<td>82</td>
</tr>
<tr>
<td>Current study</td>
<td>1.4</td>
<td>51.04%</td>
<td>100</td>
<td>57.14</td>
<td>67.7</td>
</tr>
</tbody>
</table>
K

The document contains text in a foreign language that appears to be a mix of characters and symbols. Due to the nature of the content, it is not possible to provide a meaningful transcription or translation. The text is not coherent and does not form a recognizable sentence or paragraph.
<table>
<thead>
<tr>
<th>Category</th>
<th>Drug</th>
<th>Mechanism Of Action</th>
<th>Duration Of Action</th>
<th>Peak Of Action</th>
<th>Wash Out Period</th>
<th>Adverse effects</th>
<th>Contra Indication</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adrenergic agonist</td>
<td>Apraclonidine 0.5%</td>
<td>Decreases production of aqueous humor via alpha 2 receptors on pre synaptic terminals</td>
<td>7-12 hours</td>
<td>3-5 hours</td>
<td>1-3 weeks</td>
<td>Systemic hypotension, brady cardia, Lid elevation, Pupil dilation, Burning</td>
<td>Hypersensitivity, cerebral disease, antidepressant users</td>
</tr>
<tr>
<td></td>
<td>Brimonidine 0.15%, 0.2%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Burning, Stinging, Fatigue, Sleepiness</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Clonidine 0.125%, 0.25%</td>
<td></td>
<td>6-8 hours</td>
<td>2 hours</td>
<td>1-3 weeks</td>
<td>Orthostatic hypotension</td>
<td></td>
</tr>
<tr>
<td>Non-Selective</td>
<td>Epinephrine 0.25%-2%</td>
<td>Increases out flow via both conventional & uveoscleral pathway</td>
<td>12-24 hours</td>
<td>1-4 hours</td>
<td>2 Weeks</td>
<td>Follicular conjunctivitis, tachycardia, arterial hypertension</td>
<td>Narrow angle glaucoma</td>
</tr>
<tr>
<td></td>
<td>Dipivefrin 0.1%</td>
<td></td>
<td>12-24 hours</td>
<td>1-4 hrs</td>
<td>2 Weeks</td>
<td>Same as above</td>
<td>Same as above</td>
</tr>
<tr>
<td>Selective (Beta)</td>
<td>Betaxolol 0.25%-0.5%</td>
<td>Few beta 1 receptors on ciliary body, spill over action to beta 2 receptors</td>
<td>12 hours</td>
<td>2 hours</td>
<td>2-4 hrs</td>
<td>Ocular irritation, Insomnia</td>
<td></td>
</tr>
<tr>
<td>Adrenergic antagonist</td>
<td>Timolol 0.25%-0.5%</td>
<td>Blocks beta 2 receptors on ciliary body-decreases aqueous in flow</td>
<td>2 hours</td>
<td>2 hours</td>
<td>2-4 Wks</td>
<td>Precipitate CHF, severe brady cardia, heart block, angina, mask signs of hypoglycemia</td>
<td>Asthma, cardiac disorders, Diabetes</td>
</tr>
<tr>
<td>Non-selective</td>
<td>Levobunolol 0.25%-0.5%</td>
<td></td>
<td>12-24 hours</td>
<td>2-6 hrs</td>
<td>2-4 Wks</td>
<td>Conjunctival congestion, fluctuating myopia, angle closure glaucoma, papillary block, RD, bronchospasm</td>
<td></td>
</tr>
<tr>
<td>Cholinergic</td>
<td>Acetylcholine 1%</td>
<td>Causes ciliary body contraction -pulls away sclera spur opens inter trabecular spaces increases outflow, decreases aqueous production</td>
<td>10-20 mins</td>
<td>1-3 days</td>
<td>1-3 days</td>
<td>Conjunctival congestion, fluctuating myopia, angle closure glaucoma, papillary block, RD, bronchospasm</td>
<td>Young age, cataract, NVG, diabetes, inflammatory glaucoma</td>
</tr>
<tr>
<td></td>
<td>Pilocarpine 0.25%-0.5%,</td>
<td>Blocks beta 2 receptors on ciliary body, decreases aqueous in flow</td>
<td>4-6 hours</td>
<td>1.5-2 hours</td>
<td>1-3 days</td>
<td>Conjunctival congestion, fluctuating myopia, angle closure glaucoma, papillary block, RD, bronchospasm</td>
<td></td>
</tr>
<tr>
<td></td>
<td>%, 1%, 3%, 4%, 6%, 8%, 10%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Conjunctival congestion, fluctuating myopia, angle closure glaucoma, papillary block, RD, bronchospasm</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Carbachol 0.75%-3%</td>
<td></td>
<td>6-8 hrs</td>
<td></td>
<td>1-3 days</td>
<td>Same as above, persistent bilateral keratopathy, corneal clouding</td>
<td></td>
</tr>
<tr>
<td>Carbonic anhydrase inhibitors</td>
<td>Acetazolamide 125, 250, 500 mg</td>
<td>Decreases production of aqueous humour via inhibiting carbonic anhydrase by acting locally in ciliary processes</td>
<td>7-9 hours</td>
<td>2-6 hours</td>
<td>2 Days</td>
<td>Parasthesias, tinnitus, taste alteration, blood dyscrasias, metabolic acidosis, electrolyte imbalance, Steven Johnson's syndrome, bone marrow depression</td>
<td>Kidney and liver disease, may precipitate hepatic coma, adrenocortical insufficiency, hyperchloremic acidosis</td>
</tr>
<tr>
<td></td>
<td>Methazolamide 50-100 mg/day</td>
<td></td>
<td>10-18 hours</td>
<td>6-8 hrs</td>
<td>2 Days</td>
<td>Conjunctival congestion, fluctuating myopia, angle closure glaucoma, papillary block, RD, bronchospasm</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dichlorphenamide 50 mg</td>
<td>Decreases production of aqueous humour via inhibiting carbonic anhydrase by acting locally in ciliary processes</td>
<td>6-12 hours</td>
<td>2-4 hrs</td>
<td>2 Days</td>
<td>Conjunctival congestion, fluctuating myopia, angle closure glaucoma, papillary block, RD, bronchospasm</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Topical</td>
<td></td>
<td>8 hrs</td>
<td>1 Week</td>
<td></td>
<td>Conjunctival congestion, fluctuating myopia, angle closure glaucoma, papillary block, RD, bronchospasm</td>
<td></td>
</tr>
<tr>
<td>Prostaglandins</td>
<td>Latanoprost 0.005%</td>
<td>Increases uveo-scleral outflow.</td>
<td>12-24 hrs</td>
<td>3-4 Wks</td>
<td></td>
<td>Conjunctival congestion, fluctuating myopia, angle closure glaucoma, papillary block, RD, bronchospasm</td>
<td>Known hypersensitivity</td>
</tr>
<tr>
<td></td>
<td>Bimatoprost 0.03%</td>
<td></td>
<td>8-12 hrs</td>
<td>3-4 Weeks</td>
<td></td>
<td>Conjunctival congestion, fluctuating myopia, angle closure glaucoma, papillary block, RD, bronchospasm</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Travoprost 0.004%</td>
<td></td>
<td>8-12 hrs</td>
<td>3-4 Weeks</td>
<td></td>
<td>Conjunctival congestion, fluctuating myopia, angle closure glaucoma, papillary block, RD, bronchospasm</td>
<td></td>
</tr>
<tr>
<td>Hyperosmotics</td>
<td>Methylcellulose 20% 1gm/Kg</td>
<td>Decreases vitreous vol by causing movement of water from vitreous into intra ocular vessels</td>
<td>3 hrs</td>
<td>20-60 min</td>
<td>3-4 Weeks</td>
<td>Hyperosmolar non ketotic coma, Severe hyper kalemia, nausea, vomitltg, Marked diuresis, Urinary retention, Pulmonary edema</td>
<td>Diabetes Mellitus</td>
</tr>
<tr>
<td></td>
<td>Mannitol 20% 1gm/Kg</td>
<td></td>
<td>7-9 hours</td>
<td>40-60 Min</td>
<td>3-4 Weeks</td>
<td>Hyperosmolar non ketotic coma, Severe hyper kalemia, nausea, vomitltg, Marked diuresis, Urinary retention, Pulmonary edema</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Isoosorbide 45%</td>
<td></td>
<td>4-6 hours</td>
<td>3-4 Weeks</td>
<td></td>
<td>Hyperosmolar non ketotic coma, Severe hyper kalemia, nausea, vomitltg, Marked diuresis, Urinary retention, Pulmonary edema</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.5gm/Kg</td>
<td></td>
<td>5-5 hours</td>
<td>1-3 Hrs</td>
<td></td>
<td>Conjunctival congestion, fluctuating myopia, angle closure glaucoma, papillary block, RD, bronchospasm</td>
<td></td>
</tr>
</tbody>
</table>
不會 作出任何判斷 只記載 對於及合適
The text appears to be a mix of Russian and English, possibly containing a legal or technical document. However, it is challenging to read due to the formatting and characters used. The text seems to contain legal terms, placeholders, and potentially technical specifications.

To provide a proper translation or representation, more context or clarification on the content is needed. The document appears to include placeholders such as "FOFSBM", "VUIPST", "PF", etc., which might be identifiers for specific sections or data points.

Due to the nature of the content and the formatting, it is difficult to extract or represent the text in a readable form without additional context or clarification.
<table>
<thead>
<tr>
<th>Advertise Position</th>
<th>Page Colour</th>
<th>Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Back outside cover</td>
<td>Full Page Colour</td>
<td>Rs. 30,000.00</td>
</tr>
<tr>
<td>Back inside and Front inside</td>
<td>Full Page Colour</td>
<td>Rs. 20,000.00</td>
</tr>
<tr>
<td>Inside</td>
<td>Full Page Colour</td>
<td>Rs. 15,000.00</td>
</tr>
<tr>
<td>Inside</td>
<td>Full Page B/White</td>
<td>Rs. 10,000.00</td>
</tr>
</tbody>
</table>

For advertisement in KJO, please contact Editorial Office:
Dr. Gopal S. Pillai, Editor KJO
Department of Ophthalmology
Amrita Institute of Medical Sciences, Kochi, Kerala - 682 041
Email: gopalspillai@gmail.com Mob: 094473 91266